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ABSTRACT 

A nonsymmetric analogue of a Gram matrix is used to represent the infinite 
companion matrix introduced by the author in [4] as a projection operator in Hz. The 
method consists in constructing, for a given set fo,. . ,f, _ 1 of linearly independent 
vectors, another set g,, . , g R _ 1 which lies in a given space and satisfies ( 5, gk) = Sik. 
The infinite companion matrix may then be interpreted as an interpolation operator. 
Connections with Lyapunov-type equations are also explained. 

INTRODUCTION 

Consider a contraction T on a Hilbert space H. If the spectral radius of T 

is less than one, then T’ --) 0 as T tends to infinity, so that there will be a 
power of T whose norm is less than one. In 1960 the present author 
discovered the following rather surprising fact: if the Hilbert space has 
dimension n, then already IT”1 is smaller than one [2]. It is somewhat more 
difficult to give this result a quantitative form: to find the supremum of IT” 1 if 
T ranges over all contractions T whose spectral radius does not exceed a given 
number p < 1. The solution was given in the second paper of the series [3, 
41-a description was given of a contraction T with spectral radius T for 
which IT”1 assumes its maximum. The solution of this maximum problem was 
based on the consideration of individual sequences x0, TX,, T2x,, . . . . Since T 

is annihilated by its characteristic polynomial, such sequences are determined 
bythefirstntermsx,,Tx,,..., T”-‘xO. For a contraction the Gram matrix G 
of these vectors satisfies an equation of Lyapunov type 

G-C*GC=P 

for a certain positive semidefinite P. The maximum problem was then 
transformed into an extremum problem for the matrices P. 

LINEAR ALGEBRA AND ITS APPLICATIONS 49:57-78 (1983) 57 

0 Elsevier Science Publishing Co., Inc., 1983 
52 Vanderbilt Ave., New York, NY 10017 00243795/83/010057-22$3.00 



58 VLASTIMIL PTAK 

In spite of the fact that subsequent investigations (notably the paper of 
B. Sz.-Nagy [7]) have yielded a more elegant proof, the original idea has not 
lost its interest, in particular because it puts into evidence the connection 
between the maximum problem and Lyapunov-type equations. 

In order to describe the relation between the infinite sequence ~a, TX,, . . . 
and its first n initial conditions, the author introduced, in [4], the so called 
“infinite companion matrix,” whose study forms the subject matter of the 
present note. We intend to elaborate more deeply the ideas used in the 
author’s original proof, in particular the application of Gram matrices. Of 
course, Gram matrices can only be used to represent positive semidefinite 
matrices, while some of the matrices naturally occurring in the theory are 
even nonsymmetric. Also, subsequent investigations of N. J. Young [8] have 
shown that nonperpendicular projections can be used with advantage in the 
theory. This led to the consideration of generalized Gram matrices which 
make it possible to present a geometrical interpretation of the results. 

We obtain a unified treatment of several results studied separately thus 
far, as well as a considerable simplification of the proofs. Among other results, 
we give a quite simple and geometrically intuitive proof of an explicit formula 
for the solution of Lyapunov equations due to N. J. Young [8]. The use of dual 
n-dimensional subspaces reveals also the geometrical meaning of the function 
F used by the author [5] in order to obtain an explicit expression for the 
infinite companion matrix. Also, the function F may be used in a simple 
manner to obtain the classical interpolation formula. 

1. GENERALIZED GRAM MATRICES 

Consider a Hilbert space H. If a vector u E H is represented as a linear 
combination of n given vectors f,, . . . ,f, _ 1, 

then its scalar product with the vector 

0 = y&-J + . . . + !/nplgn-l 
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We have denoted by gjk the scalar product ( fk, g j). The matrix with elements 
gjk will be denoted by G(f, g) and will be called the Gram matrix of the 
n-tuplesf= (fO ,..., f,-i) and g = (go ,..., g,_ 1). If the coordinates are inter- 
preted as column vectors in C”, 

X=(x,,...,x._,>T, Y=(Yo >..., Y,-l)T> 

the above relation may be rewritten in the form 

(u, v) = y*Gx = (Gr, y). 

We shall represent an n-tuple of vectors as a row vector f = (fo, . . . ,f,_ 1). If 
g =(g,,..., g,_r) is another such n-tuple, we can write formally 

G(_f, d = g*f. 

In the particular case of vectors in C”, the row vector b may be identified 
with the n-by-n matrix (fo, . . . , API), and it is not difficult to verify that the 
above formula remains true even in this interpretation of g*f. 

Consider now two coordinate vectors 

x = (x0 ,...,Xn_JT, Y= (YLw-,YnJT 

and the vectors 

u=C”jfj, ’ = C Yjgj’ 

Writing them in the form u = jk, v = gy, their scalar product becomes 
(u, 0) = (fi, gy) = (gy)*fjc = y*g*fx = Y*GX = (Gx, Y>. 

Suppose we have two operators A, B E a(H) such that the matrices M(A) 
with elements aik and M(B) with elements bik satisfy 

Bgj= Cbrjgr. 

Then G( Af, Bg) = M( B)*G( f, g )M( A). 
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Suppose we have two n-tuples fo, . . . and g,, . . . such that G( f, g ) is 
invertible. The following simple method of constructing the inverse matrix 
G( f, g)-' will be used in the sequel. Suppose we find two operators A and B 
such that 

(Aft‘, Bg,) = Sik; 

let us show that G-l = M(A)M(B)*. Indeed, it follows from the above 
formula that 

I = M(B)*GM(A), 

whence 

M(B)*[GM(A)M(B)* - i] = [M(B)*GM(A)]M(B)* - M(B)* = o. 

In a similar manner 

[M(A)M(B)*G-l]M(A)=M(A)[M(B)*GM(A)-l]=O. 

Let F, G be two finite-dimensional subspaces of H. We shall say that F 

and G are dual to each other if, for each f E F, f * 0, there exists a g E G 
such that (f, g) * 0 and for each g E G, g * 0 there exists an f E F with 
( f, g ) * 0. Clearly this is only possible if F and G have the same dimension. 

The following equivalence is obvious: 

PROPOSITION 1.1. Let F and G be two finitedimensional subspaces of H. 

Then these are equivalent: 

(1) F and G are dual to each other, 

(2) GnFl =OandFnGl =O, 

(3) foreverybasisf=fo,...,f,~1ofFandeverybasisg=g,,...,g,_,of 

G, the matrix G( f, g) is nonsingular, 

(4) there exists a basis f for F and a basis g for G such that det G( f, g ) * 0, 

(5) F + G ‘=HandG+Fl=H. 

Proof. Condition (2) is nothing more than a reformulation of (1). 
The equivalence of (2), (3), and (4) is elementary linear algebra. Now 

suppose that (4) is satisfied, and consider the basis go,. . . ,g,_ 1 of G and the 
basis&,..., f,_l of F. Since det(g,, fi) is different from zero, it is possible to 
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determine, for each x E H, coefficients q,, . . . , a,,_ 1 such that 

for k = O,l,. . . , rx - 1. The vector g = Cajg j satisfies the conditions g E G and 
X-gEFI, so that n=g+(x-g)EG+F*. In a similar manner we see 
that H = F + G I. On the other hand, assume (5) and consider an x E G n F I. 
Sincex=f+g’ forsuitablefEFandg’~G’,wehave(x,x)=(x,f)+ 
(x, g ’ ), and both summands are zero. Hence x = 0. n 

PROPOSITION 1.2. Let F and G be a pair of dual subspaces of H, and let 
f =fo,...,f,_1 be a fixed b asis of F. For a set of vectors h= h,,...,h,_, the 
following conditions are equivalent: 

(1) x - X(x, hj)-f;.E G’ fm every x E H, 
(2) hj E G and G( f, h) = 1, 
(3) hj=Z.,dSjg,, where g=(g,,..., 

elements of the matrix G(g, f )-l. 
g,_l) is a basis of G and dSj are 

For a fixed basis f there exists exactly one system h with the properties above. 
In particular, 

f=C(f,hj)f;. 

for all f E F. 

Proof. Suppose first that (1) is satisfied, and let us show that the hj lie in 
G.Tothisendchooseabasisg,,g,,..., g,_, of the space G. For each x E H 
we have x - x(x, hj)f;. E G I. It follows that, for every x E H and every s, 

( x,g,-C(g,,f,)h,)=(r,g,)-C(f,,g,)(x,h,) 

=(x-C(x,h&,gs)=o, 

so that each g, is a linear combination of the h,, 

g,=C(g,,f,h 

and, the matrix G(g, f) being nonsingular, the h, are linear combinations of 
the g,; hence h, E G. 
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For every f E F we have 

hence f = C(f, hj)$. In particular fk = CA_&, hj)h, whence G(f, h) = 1. Now 
write the h, in the form h, = CSdSjg,. We have 1 = G(h, f) and 6, = (ha fk) 

= C,d,j(g,, fk)= Ld,jG(g, f)ks> so that G(g, f)D = 1, where D = (d, j). 
We have thus shown that there exists at most one system h with property (1). 
Any such system must be of the form h, = Cd,,gS with D = G(g, f)-‘. To 

prove the existence, take the vectors h, = C,d,,g# with D = G(g, f)-‘; we 

see first that they belong to G and that G( f, h) = 1. Also, f = C( f, hk)fk for 

every f E F. Let us show now that (1) holds for every x E H. Given X, we 
maywritex=f+g’ tithfEF,gLEGL,sothat(x,hk)=(f,hk)forall 

k . Furthermore 

x-C(x,h,)f,=f+gL-C(f,h,)f,=gL EGI. n 

The proposition just proved shows that-given a dual pair F, G and a 
basis f = fo,..., f,_ 1 of F -there exist among all systems m = me,. . . , m, _ 1 
with the property 

G(f,m)=Z 

exactly one for which all mj E G. This system, denoted by h = h,, . . . , h, _ 1 has 
the property that the mapping II( F, G I ) defined by 

is a projection with range F and kernel G I. 
It is not difficult to verify the following general formula: 

The fact that among all systems orthogonal to a given basis f of F exactly 
one may be singled out which is contained in G will be formulated as a 
lemma. 

LEMMA 1.3. Given a dual pair F, G and a basis f = (fo, . . . ,f, _ I) of F, 
there exists exactly one system h = (h,, . . . , h, _ 1) satisfying the conditions 

(1) G(f, h) = 1, 
(2) h, E G for all j. 
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In our applications the spaces F and G will be of the form F = KerA and 
G = Ker B. In this case a basis-free expression for ll(G, F L ) may easily be 
given. It is based on a simple observation which we prefer to formulate in its 
full generality for infinitedimensional Hilbert spaces. The following two 
lemmata might serve as an explanation of its algebraic substance. 

LEMMA 1.4. Consider three linear spaces H, K, M and two linear 

operators 

B:H+M, 

C: K + H. 

Suppose there exists a linear operator Y: M + K such that YBC is the identity 

operator on K. Set 

P = CYB, Q = BCY. 

Then 

P is the projection operator in H onto Im C along Ker YB, 

Q is the projection operator in M onto Im BC along Ker Y. 

Proof. It is easy to verify that P2 = P and Q2 = Q. Clearly Im P c Im C; 
the inclusion ImC c Im P is a consequence of the identity PC = C. Since 
YBP = YB, we have YB(I - P) = 0, so that Ker P c Ker YB. The inclusion 
Ker YB C Ker P is obvious. The assertion about Q follows in a similar manner 
from the identities YQ = Y and QBC = BC. n 

LEMMA 1.5. Suppose that H, K, M are three Hilbert spaces, and consider 

two linear operators 

A:H-,K, B:H+M. 

Suppose there exists a linear operator Y such that YBA’ is the identity 
operator on K. Suppose that H = Im A* + Ker B. Then A*YB is the projection 
on H onto Im A* along Ker B. 

Proof. According to the preceding result, A*YB is the projection of H 
onto Im A* along Ker YB. Hence our assertion will be proved if we show that 
Ker YB = Ker B. To prove the inclusion Ker YB C Ker B, consider an x for 



64 VLASTIMIL PTAK 

which YBx = 0. Now x may be written in the form r = A*u + .a for some u 
and some z E Ker B; it follows that 

u=YBA*u=YB(r-z)=O 

so that x = z E Ker B. The inclusion Ker B c Ker YB being immediate, this 
proves the proposition. n 

The result which we shall need is little more than a modification of the 
preceding lemma. 

PROPOSITION 1.6. Suppose A and B are two bounded linear operators on 

the Hilbert space H, such that Im A* + Ker B is dense in H. Suppose that 

there exists a bounded linear operator Y such that YBA* = I. Then Im A* is 

closed, and 

P = A*YB 

is the projection II(KerA' , Ker B) onto Im A* along Ker B. 

Proof. The estimate 

1x1 = JYBA*xJ < JYBJjA*xl 

implies that the range of A* is closed. 
We have P2 = A*YBA*YB = A*(YBA*)YB = P, so that P is a projection. 

Since PA* = (A*YB)A* = A*(YBA*) = A*, the operator P leaves invariant 
elements of the range of A*. 

Clearly Ker B c Ker P. Let us show that the two kernels are identical. We 
show first that Ker P c Ker YB. Indeed, YB = (YBA*)YB = YB( A*YB) = YBP, 

so that Px = 0 implies YBx = 0. 

Now we use the density of Im A* + Ker B to show that Ker YB c Ker B. 

Suppose that YBx = 0, and let F > 0 be given. Then there exist elements x and 
k such that 

1.x - A*z - kl< E 

and Bk = 0. Hence 

,z = YBA*z = YB(x - k) - YB(x - A*.z - k) 

= -YB(x-A*z-k), 
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so that IzI < 1YBl.s. It follows that 

lBrl< IB(A*z + lc)l+lB(r - A*z - k)J 

< IBA*IIYBle + IBle, 

so that lBxl may be made arbitrarily small. Hence Bx = 0, and the proof is 
complete. n 

We conclude this section by pointing out how these facts may be used to 
obtain the inverse of a matrix G(f, g). First of all, we express the inverse of 
G(f, g) in the form G(b, a) for suitable systems a, b and then indicate a 
simple method of practical construction of such systems. 

PROPOSITION 1.7. Let F, G be a dual pair with bases f = (fo,. . . ,f,_ 1) 

andg=(g,,..., g,_l). Suppose we are given two systems 

a = (a,,...,a,_,), 

b= (bo,...&1>> 

orthogonal respectively to f and g, so that G( f, a) = I, G(g, b) = I. If bi E F 
for all j, then 

G(f,g)G(b,a)=Z. 

Proof 

= c(_fL d(b,d= CG(f, d&(W,,. 
T r 

Given a dual pair F, G and a basis fo, . . . , f, _ 1 of F, there exists, as we have 
seen, exactly one system h,, . . . , h,_ 1 of vectors in G for which G( f, h) = I. It 
may be constructed from any basis g,, . . . ,g,_ 1 of G by setting 
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the wsj being elements of the matrix W = G( g, f)- ‘. This is not satisfactory 
from the practical point of view. In many considerations the following 
construction turns out to be useful. Take any set of vectors uj such that 
G(f, U) = 1, and set h, = II(G, FL )uY We have thus uj = hj + kj, where 
hjEGandkjEFL, whence (fk, hj) = ( fk, uj). It follows that 

G(f,h)=G(f,u)=Z. 

2. THE INFINITE COMPANION MATRIX 

In what follows the space H will be the Hardy space Hz of holomorphic 
functions on the unit disc. We shall denote by e,, e,, . . . the orthonormal 
system of functions e,(z) = 2”. For each y, IyI < 1, let e(y) be the element of 
H2 given by 

We have thus (f, e(y)) = f(y) for each f E H2. If x E H2, we denote by f the 
function 

z(2) = [x(x*)]*. 

If p is a polynomial of degree 42, we define pa and pi as 

so that 

PO = (6)lY P,=(Por-=(P)o. 

The (backward) shift operator S is defined as the mapping which assigns 
to a function f the function g as follows: 

Its adjoint S* is the operator of multiplication by z. 
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In the course of his investigations of the connection between the norms of 
powers of an operator and its spectral radius, the present author introduced 
[4], for each polynomial p, an infinite companion matrix. Let us recapitulate 
briefly its definition and properties. It was originally denoted by T”. Since 
we shah consider, occasionally, more than one polynomial, we shah write 
T”(p) to mark the dependence on p. Also, it is convenient to change the 
numbering of the indices slightly. Given a polynomial p of degree n, written 

p(z)= -(a,+ e.. +a,_&-‘)+z”, 

the companion matrix C(p) of p is 

10 1 0 ... 0 \ 

C(n)= ; ; ; 
. 0 

::. 1 * 

The matrix T”(p) has n columns numbered 0, 1, . . . , n - 1 and an infinite 
number of rows 0,1,2,. . . , with the following properties (each of which is 
characteristic): 

(1) the jth column cj of T”(p) is the solution of the recurrence relation 

x r+n = aox, -I- u1x,+1+ . *. + u”-1X,+“-l 

with the initial conditions 

and 

xi=1 

Xk = 0 for all 0 < k < n - 1 different from j, 

(2) given any r=0,1,2 ,..., the matrix consisting of the 
rows of T”O(p) starting with the rth row is equal to C(p)‘, 

n consecutive 

(3) given any n-dimensional operator A such that p(A) = 0 and any 
nonnegative T, then 

n-1 

A’= c trkAk, 
k=O 
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(4) if F(y, z) stands for the function C~‘+C~$itl,yjz’, then 

F(Y, z> = i&(1-&) 
(this formula makes it possible to express the tlj in terms of the coefficients 

a,), 
(5) if ai,..., (Y, are the roots of p, then 

trj= (_ l)n-j-lc del~***~en)-l a;,. . . a2, 

i 
n-j-1 1 

the summation ranging over all n-tuples of nonnegative integers e,, . . . , e,, such 
that Ce= r - j, while q(e,,..., e,,) stands for the number of those e which are 
positive. 

The formula in (5) is due to Z. Dostal [l] and V. Pt&k [5]. The function 
F(y, z) appears first in [5]; some of its further properties will be discussed 
below. 

Let us remark here that the results of the present note make it possible to 
give yet another interpretation to the entries of TM: 

(6) The rth row of TM consists of the coefficients of the polynomial 
obtained as remainder upon dividing x’ by P(X). 

Consider now a fixed polynomial p: 

p(z) = a, + a,2 + . . . + a,z” = a,(z - fxl)-. . (z - an), 

with all roots inside the unit disc. Every element h of the space Hz may be 
written in the form 

h = h, + h,, 

where h, is a polynomial of degree < n - 1 and h, is a multiple of p. This 
decomposition is unique. Denote by F the linear span of e,, e,, . . . , e,_ i, and 
by G the rrdimensional space Ker $(S). It follows that F and G are dual to 
each other and that G ’ coincides with the subspace of all multiples of p. 

If (Y i, . . . , a, are all different, the space G is generated by the evaluation 
functionals e( cu,), . . . , e(a,) and the decomposition h = h, + h, may be char- 
acterized by the interpolation property of hl: h, is the (only) polynomial of 
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degree < n - 1 which assumes the same value as h at the points oi, . . . , a,. 
Then h, is divisible by p, since it assumes the value zero at each point q. In 
this case the duality of F and G is easily established, since 

det(e,., e(a,)) = det a: 

is the Vandermonde determinant of the roots (~i,. . . , a,. 
If the polynomial p has multiple roots, then a basis for G may be 

constructed as follows. Given a root cx of multiplicity m, we take the 
(obviously linearly independent) functions 

e(a), e(a)2,...,e(Cy)“; 

the union of these sets if (Y ranges over all distinct roots of p forms a basis for 
G. The corresponding characterization of h, is then that h, is the (only) 
polynomial of degree < n - 1 with the following property: for each root (Y of 
multiplicity m the values of the derivatives of h and h, at (Y coincide, i.e., 

hik’( a) = hck)( a) for k=O,l,..., m-l. 

Denote by g = (g,, . . . , g,_i) the basis of G for which G(e, g) = 1, and by II 
the projection onto F for which Ker II = G ‘, so that 

nf= C(fp gjjej 

for every f E H2. 
If A is an operator for which p(A) = 0, we have 

n-1 

f(A)= C (f,gj)dy 
j=O 

since f - II f is a multiple of p. 
Let us clear up the connection of the functions g j with the matrix 7’“. The 

basic property of T” is the possibility of expressing all nonnegative powers of 
an n-dimensional operator in terms of the first n - 1 powers. Thus 

n-1 

A* = c tr, Ak 
k=O 
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for every operator A for which p(A) = 0. In particular 

n-1 

ff’ = c trpk 
k=O 

for every (Y in the spectrum of A. Suppose for a moment that all the roots of p 
are distinct. The above equation says then that zr - ZElA trk.zk is divisible by 
p, so that Ile, = C;:ttrkek for every r = 0, 1,. . . . The coefficients of g, may 
thus be obtained as follows: 

so that g, = E, if ck stands for the kth column of T”. 
We have thus proved that lI = lI(F, G A ) may be expressed as 

n-1 

IIX = C (x,Cj)ej. 
j=O 

To avoid continuity arguments, let us show how this relation may be proved 
even in the general case. 

Let P: H2 + C” be the operator which assigns to each sequence 
(r,, Xl,. . . )EH2then-vectorPx=(x,,x,,...,x,_,)T.TheadjointofPisthus 
the injection V of C” into H2, 

v(b 0 ,..., x”-I)T)=(xo,xl ,..., x,-1,0,0 ,... ). 

Since the columns c,, . . . , c,_ 1 of T”(p) are linearly independent, they 
generate Ker p(S). The composition Tm( p)P, 

T”( P>PX = C (xy ej>cj, 

obviously coincides with lI(Ker p(S), F 1 ), so that its adjoint is 

Now Ker p( S) ’ is nothing more than the set of all multiples of 6. In order to 
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obtain the projection onto F along the multiples of p it suffices to replace the 
elements of T”(p) by their conjugates, so that 

H=rr(F,Kerp(S)‘)=VT”(p)‘, 

nx = c (x, Ej)ej. 

In this manner the system gg characterized by the postulates that g,, . . . , g, _ 1 
be orthogonal to ec,...,e,_, and g j E G = Ker $( S), coincides with C: 

g, = Ei. 

The rest of this section will be devoted to the investigation of a formula 
important for the study of the matrix T”. This formula (see formula below) 
was established first in [4], where it was used to obtain an explicit expression 
for the coefficients trk. 

Let us define a function F(t, z) for (tl < 1 and (z( < 1 as the value at z of 
the function lle(t*). We have thus 

IIe(t*)=II F t'e,= fJ trnilt,kek 

r=O r=O k=O 

= nli1( f trktrjek=nilfk(t)ek, 
k=O r=o k=O 

where fk = gk. Hence 

F(t, 2) = c f,(t)zk. 
k=O 

In a somewhat less precise form this may be written as 

k=O 

In [4] the following explicit expression for F was obtained: 

F(t, z) = $-(l-t”~)~ 

where q stands for the polynomial pi, so that q(t) = t’+(l/t). 
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In what follows we present a series of propositions, some of which are of 
independent interest; they provide another proof of the formula above as well 
as some other interesting consequences. Some of the already known results 
appear thus in a different light, which provides more insight into the matter. 

PROPOSITION 2.1. Let p be a polynomial of degree n, and let q be the 
polynmnial q(t) = t”p(l/t). Then 

s”q(s*) = p(S). 

Proof. Since SS* = I, we have 

Snq(S*)=Sn t a,_jS*j= i a,_jS”-j= p(S). 
j=O j=O 

n 

An immediate consequence of this is the following corollary. 

PROPOSITION 2.2. Suppose the sequence x = x0, x1,. . . satisfies the recur- 
rence relation 

i ajxr+j=O forall r=O,l,... , 

j=O 

Then the product q(t)CrCO=,x,tS is a polynomial of degree < n - 1. 

Proof. The element x satisfies p(S)x = 0. Since the product q(t)Ex,tS is 
nothing more than q(S*)x, it is annihilated by S” and is, accordingly, a 
polynomial of degree Q n - 1. A less sophisticated computational proof goes 
as follows. The coefficient of tk in the product q(t)x(t) is Xajxs for all pairs 
j, s such that n - j+ s = k, 0 < j< n, and s > 0. The second constraint means 
that k - n + j should be nonnegative and is superfluous if k >, n. In this case 
all indices 0 < j< n are admissible and the sum is zero. W 

The function F(t, z) = CI$fk(t)zk is a polynomial of degree < n - 1 in 
z. The functions fk belong to Kerp(S), since fk = gk and g, E Ker@(S). It 
follows from Proposition 2.2 that q(t)F(t, z) will be a polynomial in t of 
degree not exceeding n - 1. Hence 

n-l 

q(t)F(t, z)= c wj(t)zj 
j-0 
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for some polynomials wj of degree Q n - 1. At the same time it follows from 
the definition of F that 

is a multiple of p( z ), so that 

q(t) - (1- tz)&ujzj= q(t) - (I- tz)q(+qk 4 

= Cl- bb&)(j& - F(t, 4j 

is a multiple of p(z). We can thus write 

q(t) - (1- tz)cwjzj= p(z)+ 2). 

Write m in the form 

m(t,z)=m,(t)+m,(t)z+m2(t)z2+ .-. . 

As a function of z the left-hand side of the above identity is a polynomial of 
degree < 12; it follows that m, = m2 = . . . = 0, whence 

q(t) - (1- tz)&Ijzj= p(x)a(t) 

for some polynomial a(t) of degree < n. Now it is easy to see that there exists 
exactly one polynomial a(t) for which 

is divisible by 1 - tx. This is the polynomial a(t) = t”. Indeed, 

q(t) - t”p(z) = i (urP’- u,z’t”) 
r=O 

= 2 a$“-‘(1 - SC), 
r=l 
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so that 9(t) - t”p(z) is divisible by 1 - tz. On the other hand, if a(t) is a 
polynomial for which q(t) - p( ~)a( t) is divisible by 1 - tz, the expression 

is a multiple of 1 - tz and hence becomes zero if we set z = l/t. It follows 
that 

[t” - a(t)]p(+) = 0 

and u(t) = t”. 
Summing up, we have 

(1- tz)&Lljd= q(t) - t”p(z), 

whence (l- tz)q(t)F(t,z)= q(t)- t”p(z). 
A somewhat more explicit form of the polynomial Cwj(t)nj may be 

obtained as follows. Denote by r the polynomial for which 

P(Y) - Pb) = (Y - 44L 4, 

so that r is of degree Q n - 1 both in y and z. Hence 

s(t)-tnp(a)=t’[p(f)-p(z)] 

so that 

&Oj(t)zj= tn-lr( +, z). 

3. THE LYAPUNOV EQUATION 

Let us sketch briefly how the construction of orthogonal systems described 
at the end of Section 1 may be used with advantage to prove explicit formulae 
for the solution of Lyapunov equations. 



THE INFINITE COMPANION MATRIX 75 

First of all, it follows from the second property of T”(p) that postmulti- 
plication by C(p) amounts to the same as shifting T”(p) one row up. In 
other words, interpreting T”O(p) as a mapping of C” into Hz, the following 
relation holds: 

Wp)C(p) = SW?4. 

Given two polynomials a, b of degree n, we have 

C(a)*T”(a)*Tm( b)C( b) = T”(a)*S*ST”( b) 

= T=‘(u)*(Z - E&““(b) = P(u)*T”(b) - E, 

where we have denoted by E, the projection of H2 onto the constant 
functions and by E the matrix 

I1 0 0 .f. 0 

0 0 0 *.a 0 
E= . . . 

. . I 

This fact may be used to give an explicit expression for the solution of the 
Lyapunov equation 

X - C(u)*XC(b) = E. 

Indeed, the identity above shows that X = T”(u)*T”(b) is the solution, and 
it follows from the first property of the infinite companion matrix that X is 
nothing more than the Gram matrix of the bases 

c(b)=(co(b),...,cn_l(b)) and ~(a)=(c,(u),...,c,_r(u)). 

Although explicit expressions for the functions cj are known, much neater 
formulae for the solution of the Lyapunov equation may be obtained using 
Lemma 1.5. Set 

F = Keru(S), G = Kerb(S), 

A’ =II(G,FL)ei, gb =!J(F,GL)ei. 
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Then 
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G(c(b),c(u))=G(f~,g’)-’ 

and 

G(fl,gI)ik=(fkl,gl)=(n(G,F’)e,,n(F,GI)ei) 

= (II(G, Fl)ek,e,). 

Now we shall use Lemma 1.6 to show that 

II(G, F ‘) = I - ho(S)*-‘u(S)*b(S)u,(S) -l. 

Indeed, we have for A = a(S) and B = b(S) 

II(G,Fi)=Z-lI(Fl,G) 

= Z - A*YB = I - a(S)*[b(S)a(S)*] -‘b(S), 

and it suffices to observe that 

lT(s)a(s)* = a,(S)b,(S)* 

(see the last formula on p. 370 in [6]). We have thus 

so that 

X=G(fl,gl)-‘= [I - b,(sn)*-‘a(S,)*b(sn)a,,(S,,)-l] -I. 

This formula was obtained first and the proof subsequently greatly simplified 
[8] by N. J. Young. 
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4. THE INTERPOLATION FORMULA 
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As an application of the preceding considerations we intend to derive the 
classical interpolation formula for functions m E H2. An explicit expression 
for IIm may be obtained using the following identity: 

For convenience let us recall that ll = II( F, Ker p(S) 1 ) and that F(Y, x) 
= (IIe(Y*), e(z)). In particular, if IYI = 1 then 

F(Y*,z)=& 

using this, we obtain, for y = eit, 

Hm = C(w gk)zk 
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